

End-to-End Integration of Laser Ablation, ICP– MS, and Data Reduction: A World First!

Author

Dr C. Ashley Norris Norris Scientific an@norsci.com

Introduction

Data reduction of LA–ICP–MS data sets has been realised previously via loosely coupled systems supplied by a range of different vendors. While this approach provides considerable flexibility, that same flexibility can result in propagation of mistakes due to the onerous requirements of the workflow, such as manual editing of data files and duplication of set-up in multiple software packages. In addition, the limitations of this approach have resulted in some laboratories imposing unnecessary limitations on what they believe can be measured during a single analytical session.

To address this problem Norris Scientific has mapped out and implemented the first end-toend workflow that allows users to set up, execute, and reduce data from any LA-ICP-MS session without the need to duplicate input or use spreadsheet software to edit any files. Multiple quantification routines can be easily mixed together, and the not-insignificant risk of mistakes due to mishandling is eliminated. All of these advantages allow the analyst to focus on more important aspects of LA-ICP-MS such as sampling, instrument tuning, and optimisation of ablation conditions.

While this workflow has been first implemented in *GeoStar* and *LADR*, with support for some ICP–MS instruments, it is hoped that other manufacturers will emulate this workflow to the benefit of the LA–ICP–MS community.

Workflow Summary

Practically all LA-ICP-MS sessions are measured by sample-standard bracketing where primary standards are measured every 45–60 minutes to calibrate the ICP–MS response and assess instrument drift over time. Secondary standards can be used in a number of ways, as either a qualitative check that quantification can recover known values, or more quantitatively such as determining matrix correction factors (at different spot sizes) or measuring excess uncertainty. To assess uncertainty it is desirable to place secondary standards half way between calibration standards, where models of drift will be least constrained.

The new workflow (Figure 1) requires the laser ablation instrument to send a trigger signal for each ablation to the ICP–MS, which saves the time resolved signals from each ablation to a separate file. Starting with the laser ablation instrument software (*GeoStar* in this example), the sample list is defined and transferred over to the ICP–MS instrument via a sample list file. This transfer allows the ICP–MS software to

Num.	Comment	• S	过 Time	f Rep	🏫 Energy	Туре	Quant Name
• 1.	NIST610	🔵 30µm	1.2m	10Hz	🚰 4J.cm ⁻²	Primary	
0 2.	NIST610	🔵 30µm	1.2m	10Hz	2 4J.cm	Primary	
• 3.	GSD	🔵 30µm	1.2m	10Hz	2.5J.cm ⁻²	Secondary	
• 4.	GSD	🔴 24µm	1.2m	10Hz	2 3.5J.cm ⁻²	S Secondary	
5.	Sample1_GrainA	🔵 30µm	1.2m	10Hz	2.5J.cm ⁻²	Sample	BasalticGlass
6.	Sample1_GrainA	🔵 30µm	1.2m	10Hz	🚰 3.5J.cm ⁻²	Sample	BasalticGlass
• 7.	Sample1_GrainB	🔵 30µm	1.2m	10Hz	2.5J.cm ⁻²	U Sample	BasalticGlass
8.	Sample1_GrainB	🔵 30µm	1.2m	10Hz	🚰 3.5J.cm ⁻²	Sample	BasalticGlass
9.	Sample1_GrainC	🔵 30µm	1.2m	10Hz	🚰 3.5J.cm ⁻²	U Sample	BasalticGlass
10.	Sample1_GrainC	🔵 30µm	1.2m	10Hz	管 3.5J.cm ⁻²	Sample	BasalticGlass
• 11.	Sample2_GrainA	🔴 30µm	1.2m	10Hz	竺 4J.cm ⁻²	Sample	Silicate
12.	Sample2_GrainA	🔵 30µm	1.2m	10Hz	管 4J.cm-2	Sample	Silicate
13.	Sample2_GrainB	🔴 24µm	1.2m	10Hz	管 4J.cm-2	Sample	Silicate
14.	Sample2_GrainB	🔴 24µm	1.2m	10Hz	管 4J.cm-2	Sample	Silicate
15.	Sample2_GrainC	🔴 30µm	1.2m	10Hz	管 4J.cm-2	Sample	Silicate
16.	Sample2_GrainC	🔴 30µm	1.2m	10Hz	竺 4J.cm ⁻²	Sample	Silicate
• 17.	GSD	🔵 30µm	1.2m	10Hz	管 3.5J.cm ⁻²	S Secondary	
18.	GSD	🔴 24µm	1.2m	10Hz	🛅 3.5J.cm ⁻²	Secondary	
19.	NIST610	🔵 30µm	1.2m	10Hz	管 4J.cm ⁻²	Primary	
20.	NIST610	🔴 30µm	1.2m	10Hz	管 4J.cm-2	Primary	
21.	Sample3_GrainA	🔵 30µm	1.2m	10Hz	👛 3.5J.cm ⁻²	Sample	BasalticGlass
22.	Sample3_GrainA	🔵 30µm	1.2m	10Hz	2 3.5J.cm ⁻²	U Sample	BasalticGlass
23.	Sample3_GrainA	🔴 30µm	1.2m	10Hz	管 3.5J.cm ⁻²	Sample	BasalticGlass
24.	Sample3_GrainA	🔵 30µm	1.2m	10Hz	🚰 3.5J.cm ⁻²	Sample	BasalticGlass
25.	Sample3_GrainA	🔴 30µm	1.2m	10Hz	2 3.5J.cm ⁻²	Sample	BasalticGlass
26.	Sample3_GrainA	🔵 30µm	1.2m	10Hz	👛 3.5J.cm ⁻²	Sample	BasalticGlass
27.	Sample4_GrainB	🔴 24µm	1.2m	10Hz	管 4J.cm=2	U Sample	Silicate
28.	Sample4_GrainB	🔴 24µm	1.2m	10Hz	管 4J.cm=2	Sample	Silicate
29.	Sample4_GrainB	🔴 24µm	1.2m	10Hz	管 4J.cm-2	Sample	Silicate
30.	Sample4_GrainB	🔴 24µm	1.2m	10Hz	2 4J.cm	Sample	Silicate
• 31.	Sample4_GrainB	🔵 24µm	1.2m	10Hz	👛 4J.cm-2	Sample	Silicate
32.	Sample4_GrainB	🔵 24µm	1.2m	10Hz	管 4J.cm-2	U Sample	Silicate
• 33.	GSD	🔵 30µm	1.2m	10Hz	管 3.5J.cm ⁻²	Secondary	
• 34.	GSD	🔵 24µm	1.2m	10Hz	2.5J.cm ⁻²	Secondary	
35.	NIST610	🔵 30µm	1.2m	10Hz	管 4J.cm-2	Primary	
36.	NIST610	🔵 30µm	1.2m	10Hz	🚈 4J.cm-2	Primary	

Figure 2. The sequence from *GeoStar* where the sample type and quant name can be defined.

easily show the sample names and laser conditions and also ensures the acquisition time for each sample matches between the two instruments.

After the sequence has been ablated, the data reduction software needs information from both instruments. The laser ablation software provides the sample type, quant name, and the laser parameters via the log book file, while the measured values come from the ICP–MS software via the data files.

Now that the data reduction software has all of the information about the sequence, the actual data reduction can be automated as much as possible, and the chance of transcription errors between the systems is greatly reduced.

Laser Ablation Instrument: Defining the Sequence

The laser ablation instrument is the natural location to set up the ablation sequence. Here the user has the best opportunity to clearly identify each sample and to place each ablation in the correct location. The laser ablation software offers tools to control the geometry of the sequence as well as to adjust lighting parameters: improving the chance of identifying the sample and material type correctly. This is also where the laser conditions are defined. Of course mistakes can still happen, and where possible the user should be assisted by additional information such as BSE¹ and CL² images or X-Ray maps.

As well as defining the sequence, the the laser ablation software needs to provide controls to set both the sample type (calibration standard, secondary standard, unknown, etc...) and the name of the quantification routine that will be used to quantify the ablation.

2 *Cathodoluminesence* imaging, collected on an SEM or a dedicated instrument.

¹ *Back scattered electron* imaging, typically collected on a scanning electron microscope (SEM).

An example sequence set up in the laser ablation software *GeoStar* is shown in Figure 2. The columns "Type" and "Quant Name" show the type of ablation and the name of the quantification routine used for data reduction purposes. This example differentiates between quantification of a "basaltic glass" and a general purpose "silicate" routine (a fanciful example), but other sequences could use either a single quantification routine, or many, as dictated by the application.

The laser ablation software directly exports two files: one is the "Universal Log Book" file for use by data reduction software (such as *LADR*). This contains all of the entries in the sequence, including the sample name ("Comment" in Figure 2), laser conditions, and the quant name and sample type. The second file is the ICP–MS import file. This file is saved in the specific format specified by the ICP–MS manufacturer's control software. Currently *GeoStar* can export files for use by Agilent *Mass Hunter*, Analytik Jena *ASpect MS*, and Thermo *Qtegra* software. Additional formats will be added to *GeoStar* on request.

ICP–MS: Setting Up The Run Table

The ICP-MS software is the best location for operating, tuning, and configuring the ICP-MS, but requires duplicated effort to set-up for samples defined on the laser. To simplify set-up and minimise mistakes, the run table should be imported into the ICP-MS software using a file created by the laser ablation software specifically for this purpose.

While the details vary between software packages, all ICP–MS software allows the user to import a run table from an external file. The file exported from the laser ablation software is selected, the run table is set-up automatically, and now shows additional metadata such as the sample name and laser ablation parameters.

In practice, different ICP–MS software packages handle sample names in different ways. The *Mass Hunter* software from Agilent allows the user to specify the file name and the sample

🐨 Lo	S Log Book Example Project.la											
File												
LB#	File	Sample Name		8	U	Quant Name	Spot Size (µm)	Rep Rat	Fluence (J/cm ²)	Ablation	Comment	
1	C17SE26A0001	NIST610	V				30	10	4	Spot		
2	C17SE26A0002	NIST610	1				30	10	4	Spot		
3	C17SE26A0003	S GSD-1G		V			30	10	3.5	Spot		
4	C17SE26A0004	S GSD-1G		V			24	10	3.5	Spot		
5	C17SE26A0005	Sample1_GrainA - 1				BasalticGlass	30	10	3.5	Spot		
6	C17SE26A0006	Sample1_GrainA - 2				BasalticGlass	30	10	3.5	Spot		
7	C17SE26A0007	Sample1_GrainB - 1			V	BasalticGlass	30	10	3.5	Spot		
8	C17SE26A0008	Sample1_GrainB - 2			V	BasalticGlass	30	10	3.5	Spot		
9	C17SE26A0009	Sample1_GrainC - 1				BasalticGlass	30	10	3.5	Spot		
10	C17SE26A0010	Sample1_GrainC - 2			V	BasalticGlass	30	10	3.5	Spot		
11	C17SE26A0011	Sample2_GrainA - 1				Silicate	30	10	4	Spot		
12	C17SE26A0012	Sample2_GrainA - 2			V	Silicate	30	10	4	Spot		
13	C17SE26A0013	Sample2_GrainB - 1			V	Silicate	24	10	4	Spot		
14	C17SE26A0014	Sample2_GrainB - 2			V	Silicate	24	10	4	Spot		
15	C17SE26A0015	Sample2_GrainC - 1				Silicate	30	10	4	Spot		
16	C17SE26A0016	Sample2_GrainC - 2			V	Silicate	30	10	4	Spot		
17	C17SE26A0017	NIST610	V				30	10	4	Spot		
18	C17SE26A0018	NIST610	V				30	10	4	Spot		
19	C17SE26A0019	S GSD-1G		V			30	10	3.5	Spot		
20	C17SE26A0020	S GSD-1G		V			24	10	3.5	Spot		
21	C17SE26A0021	Sample3_GrainA - 1			V	BasalticGlass	30	10	3.5	Spot		
22	C17SE26A0022	Sample3_GrainA - 2				BasalticGlass	30	10	3.5	Spot		
23	C17SE26A0023	Sample3_GrainA - 3			\checkmark	BasalticGlass	30	10	3.5	Spot		
24	C17SE26A0024	Sample3_GrainA - 4				BasalticGlass	30	10	3.5	Spot		
25	C17SE26A0025	Sample3_GrainA - 5			\mathbf{V}	BasalticGlass	30	10	3.5	Spot		
26	C17SE26A0026	Sample3_GrainA - 6			$\mathbf{\nabla}$	BasalticGlass	30	10	3.5	Spot		
27	C17SE26A0027	Sample4_GrainB - 1			\checkmark	Silicate	24	10	4	Spot		
28	C17SE26A0028	Sample4_GrainB - 2			$\mathbf{\nabla}$	Silicate	24	10	4	Spot		
29	C17SE26A0029	Sample4_GrainB - 3			V	Silicate	24	10	4	Spot		
30	C17SE26A0030	Sample4_GrainB - 4			$\mathbf{\nabla}$	Silicate	24	10	4	Spot		
31	C17SE26A0031	Sample4_GrainB - 5				Silicate	24	10	4	Spot		
32	C17SE26A0032	Sample4_GrainB - 6				Silicate	24	10	4	Spot		
33	C17SE26A0033	S GSD-1G		V			24	10	3.5	Spot		
34	C17SE26A0034	S GSD-1G		V			30	10	3.5	Spot		
35	C17SE26A0035	NIST610	V				30	10	4	Spot		
36	C17SE26A0036	NIST610	V				30	10	4	Spot		

Figure 3. The log book in *LADR*, imported directly from *GeoStar* with no manual editing.

name separately. To maintain flexibility the *GeoStar* software can use a template for the file name, rather than the sample name. By specifying the file name in one place it ensures there is a perfect match between the Universal Log Book file and the ICP-MS data files. Using a template for the file name is optional, and if desired the sample names themselves can also be used as the data identifier/file name. While this can only work with *Mass Hunter* software if the sample names are all unique (made easier by the "Auto Numbering" feature in *GeoStar*), the *Qtegra* software saves run table entries to a "Lab Book" data file which has no uniqueness requirement.

While running the sequence it is extremely useful to have access to the additional meta data such as the sample name. This ensures the user can correctly monitor and assess the run as it progresses, as well as elegantly handle interruptions if they occur.

Once the sequence has been ablated the data files can be exported from the ICP–MS software in their preferred format, ready for data reduction.

Data Reduction Software: Pulling it all together

The data reduction software (in this example *LADR*) loads the Universal Log Book file as well as the data files from the ICP–MS. The log book defines the role of each ablation, and in combination with the laser conditions and the

quantification routine, most of the data reduction set-up can be completed automatically (Figure 3).

In practice, the quant name specified during definition of the sequence in the laser software is a *first guess* based on the observed material exposed at the sample surface. Users are reminded that laser ablation is an inherently three dimensional analytical technique and that, especially in geological specimens, the material type can change substantially over a very short distance. As such, users are encouraged to review the measured signals for all ablations. Software such as *LADR* makes it trivial for the user to assign different quantification routines to different integration periods.

The workflow outlined in this document is fully supported by *GeoStar* v10.06, *LADR* v1.1.01, Agilent *Mass Hunter*, Analytic Jena *Aspect MS*, and Thermo *Qtegra*.

www.norsci.com/geostar/ www.norsci.com/ladr/

Support will be expanded to other software packages as instrument manufacturers and developers adopt this exciting new workflow.

GeoStar and LADR are trademarks of Norris Scientific. All other trademarks are the property of their respective owners and are only used in a descriptive capacity.

Application Note NSAP19A1 2019 © Norris Scientific PTY LTD

